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ON EQUI-ASYMPTOTIC STABILITY WITH 
RESPECT TO PART OF THE VARIABLES  
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(Received 19 May 1998) 

A system of equations of perturbed motion in which the right-hand sides are almost periodic functions of time is considered. A 
sufficient condition for the trivial solution of the system to be equi-asymptotically stable with respect to part of the variables is 
proved. © 2000 Elsevier Science Ltd. All fights reserved. 

The main method for investigating the stability and asymptotic stability of the solution x = 0 of a system of differential 
equations of perturbed motion 

k=X(x, t );  x=(xt  ..... xD, X=(Xt ..... Xn) (1) 

with respect to part of the variables is Lyapunov's Second Method. It is based on the construction of a Lyapunov 
function V(x, t). 

Rumyantsev [1] proved a basic theorem according to which the solution x = 0 of system (1) is stable with respect 
to part of the variables, which is an analogue of Lyapunov's stability theorem, on the assumption that the function 
V(x, t) isy-positive-definite and its derivative along trajectories of Eqs (1) satisfies the condition dV/dt  ~ O. Later 
[2, 3] a theorem was proved stating that the trivial solution of system (1) is asymptotically stable with respect to 
part of the variables, on the assumption that the derivative dV/dt  along trajectories of Eqs (1) is y-negative-definite. 

In applied problems one is frequently able to construct a y-positive-definite function V(x, y)  whose derivative 
dV/dt  along trajectories of Eqs (1) is only non-positive. Under those conditions, one can prove [4, 5] that the trivial 
solution of an autonomous system of equations of perturbed motion 

= X(x) (2) 

is asymptotically stable. 
It has been shown [6] that the analogous theorem is not true for the general case of a non-autonomous system. 
In this note we will consider a more general case than that of an autonomous system: on the assumption that 

the right-hand sides of system (2) are almost periodic functions of it, will be proved that the solution x = 0 is equi- 
asymptotically y-stable (that is, y(t)  --> 0 as t ~ 0o uniformly with respect to the initial perturbations x0). 

By analogy with previously introduced notation [7], we let xt  . . . .  , Xm(m > 0, n = m + p, p / >  0) denote the 
variables with respect to which the stability of the solution x = 0 of system (1) is being investigated. For convenience, 
we will denote these variables by Yi = xi (i = 1 . . . . .  m )  and the other variables by zj = Xr~+/ ( j  = 1 . . . . .  p ) ,  that 
is, we express the vectors x and X in the form 

x = (Yl ..... Yra, Zl ..... Zp) T =- (Y,Z) T 

X=(Y, ..... Ym, Zl ..... Zp) r ~-(Y,Z) r 

We also put 

~]=~i_~,Y?J ' I~=~j~=IZJ J '  IIX]=~i~_IX2 j =('IY~ 2+IIzII2) y2 

We will introduce a few definitions. 

Definition 1 [8]. A continuous function f(t) with values in R n will be called uniformly almost periodic if, for any 
e > 0 and every r > 0, L = L(e, r) exists such that, in any interval [~x, ¢~ + L(e)], cc ~ (-,~; + oo) there is at least 
one number x for which 

I]f( t)-  f(t +*)11 < - 00 < t < 
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Definition 2 [9]. A continuous function f(x, t) (x • / ~ ,  --oo < t < +oo), with values in R n will be called uniformly 
almost per iodic  if, for any c > 0 and every r > 0, L = L(c,  r) exist such that, in any interval [cz, cc + L(c,  r)], ~ • 
(--oo; +oo), there is at least one number  z for which 

I I f (x , t ) - f (x , t+x) l l<e ,  - o o < t < + o o ,  Uxll<r 

Definition 3 [7]. The motion x = 0 is said to be equi-asymptotically y-stable if, for every to/> 0, 8(t0) > 0 exists 
such that  Ily(t; t0, x0) II ---> 0 uniformly in IIx0 II < 8(t0) as t ---> oo; that  is, for any c > 0, T(c, to) > 0 exists such that 
IIx011 < 8 implies Ily(t; to, x0) II < e for all t />  to + T. 

Consider  the equat ions of per turbed  motion (1). The function X(x, t) is assumed to be defined, continuous and 
Lipschitzian with respect  to x in the domain 

t e R, Ilyll < n .  Ilzll < n = const (3) 

It will also be assumed that  the solutions of system (1) are z-continuable.  This means  [7] that  any solution x(t) is 
defined for all t I> 0 such that  Ily(t)II ~< n .  

Theorem. Suppose the equations of per turbed motion (1) are such that  
1. every solution of  system (1) that  begins in a neighbourhood of the point  x = 0 is bounded;  
2. one can construct a function V(x, t) which is almost periodic in t ,y-positive-definite, continuously differentiable 

and satisfies the inequality dV/dt <~ 0 in domain (3); moreover,  the derivative dV/dt may vanish only at points of 
a set that  does not  contain an entire semi-trajectoryx(x0, to, t), (to < t < +oo) of  system (1) (not counting the trivial 
solution). 

Then the solution x = 0 is equi-asymptotically y-stable. 
Before proving the theorem, we will formulate a few auxiliary propositions. 

Lemma 1. The functions X(x, t) and V(x, t) are uniformly almost periodic. 
This lemma was proved in [9]. 

Lemma 2. For  any c > 0 an unbounded  increasing sequence of  c-almost-periods {xi} exists, common to the 
functions X(x, t) and V(x, t) 

I I x < x , o -  < c, IV(x,t)-V(x,t +'~i)l < c 

The proof  follows from Kronecker ' s  theorem [10]. 

Lemma 3. Let  x(x0, to, t), (t o < t < +oo) be a semi-trajectory of  system (1) satisfying the initial condit ion x(x0, to, 
t) = x0 and contained in domain (3); let {ck} be a sequence of  positive numbers  converging monotonical ly to zero, 
and let {xk} be some sequence of ck-almost-periods of the vector function X(x, t) (each ck is associated with the 
ck-almost-period xk), where {x~} is monotone  increasing and xk ---> oo as k ---> oo. Then 

lim** X(Xk,tO, t* ) -- X(Xo, to, t * + "Ck ) I = O, Xk = X(Xo,to, to + ~k ) (4) 

where t* is some t ime greater  than to. 
The proof  may be found in [11]. 
To prove the theorem,  we will use a method described in [11, 12]. 
We first note thaty-s tabi l i ty  of the trivial solution follows from Rumyantsev's  theorem [1]. 
It can be shown that  Ily(x0, to, t)II ---) 0 as x --> oo. 
Suppose the contrary. The function V(x(xo, to, t), t) is not monotone increasing, since dV/dt <~ O. Hence  the limit 

l imt~.  V(x(xo, to, t), t) = Vo exists and V(x(xo, to, t), t) >I Vo for any t > to. It follows from our assumption that  
V0 ¢ 0. Now let {ci} be a sequence of positive numbers converging monotonically to zero. For any ci a sequence of 
almost-periods xil, zi2 . . . . .  xi~ for the functions V(x, t) and X(x, t) exists, which converges to infinity. We can write 

Ivfx, t)-Vfx, t+ IIx<x.,)-X¢x,,+ 

][xll~<e, - . o  < t  < + o o  

Let  us assume that  xin < xi+l:~, putting Xk~ = Z~. Consider  the sequence of points x~ = x(x0, to, to + xk) 
(k = 1, 2 . . . .  ). By Condi t ion 1 of  the theorem, this sequence is bounded.  Hence  we can extract a convergent  
subsequence. For  simplicity, we may assume that  the sequence {xk} itself is convergent.  Let  x* be a limit point  of 
the sequence {xk}~*= 1- It follows from our  assumption that  x* ~ 0. Using the fact that  V(x, t) is continuous and 
almost periodic,  we can write 

V(x*,to) = lira V(xk,t o +x k) = lira V(x(xo,to,t O + xt¢), t o +x k) = V 0 
k-->~, k--->oo 
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Consider the semi-trajectory x(x*, to, t)(to < t < oo). By assumption, it must contain points at which 
dV(x(x*, to, t), t)/dt < 0, that is, one can find t* > to such that V(x(x*, to, t*), t*) = V1 < I1"o. 

By the continuity of the solutions as functions of the initial data, we have 

x(x ,t0,t )=  lim x(xk,to,t*) 

Consequently 

lim V(x(xk,to,t*),t*)= V I 

.Since X(x, t) is almost periodic and condition (4) is true, we obtain 

~x(xk ,to,t*) - X(Xo,to,t* + xlc ) I~<'tk, 

The fact that V(x, t) is uniformly almost periodic implies that 

V(x, t* ) -  V(x, t* + x k )[ < e k 

It follows from (5) and (6) that 

lim = 0 
k_.~.o ~ k 

[ * * v~[ V(x(xo,to,t +xk), t  ) -  <rlk, lim rlk =0  
k--~,o 

Adding inequality (7) for x = (X(Xo, to, t* + xk)) and inequality (8), we obtain 

IV(x(xo, to, t*+zk) , t*+'Ck)-V 1 <rlk+Ek; ~k+Ek--->O as k-->oo 

(5) 

But 

(6) 

(7) 

(8) 

(9) 

dV/dt may vanish only in the setyl = 0, which does not include whole semi-traJectories of the system. Consequently, 
by the theorem just proved, the trivial solution of our system is equi-asymptotically stable with respect to Yl, Y2. 

Take V = (y4 + y42)/4" Then 

dV I dt = _y4 (y2 + 1)(1 + z 2 + sin 2 2t + cos 2 -~t)~<0 

Example. Consider the system of equations 

dz = z sin(yl2 + y2 Xsin ̀  + sin.grit)_ z3 
dt 

dyl _ 3 - -Y2 - Yl (Y22 + 1)(1 + z 2 + sin 2 2t + cos 2 -qr2t) 

ay 2 1 at = y3 

Remark. An analogous theorem may be proved for quasi-periodic systems, which constitute a special case of 
almost periodic systems, by the method of limit systems, using Theorem 2.2 of [14] and the results of [15]. 

where a is some Hahn function [13]. Thus, V(t, x) -~ 0 as t ~ ~. Using estimate (11), we conclude that 
a(lly(xo, to, t) II) ~ 0 as t ~ oo. Consequently, y(xo, to, t)ll) ~ 0. 

By the assumption of the theorem, V(x, t) >I a(lly(xo, to, t)II). We have already proved that lim~__~ V(x(xo, to, t), t) = 
0. The derivation of the limit relationship Ily(x0, to, t) II ~ 0 as t ~ oo uniformly in x 0 in a &neighbourhood of the origin 
follows from a previous result [7], the number ~5 = ~(e, to) being determined from they-stability condition: I~c011 <~ ~ 
Ily(t) II < e for any t > to. This proves that the trivial solution of system (1) is indeed equi-asymptoticallyy-stable. 

a(llYH)~ V(x, t) (11) 

Relations (9) and (10) contradict one another, since I/1 < V0. Consequently, our assumption that V0 ~ 0 is false, 
so V 0 = 0. Since V(x, t) isy-positive-definite, it follows that 

lim V(x(xo,to,t* +'Ok), t* + xk ) = V 0 (10) 
k----~ 
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